Minimax Estimation of Bandable Precision Matrices
نویسندگان
چکیده
The inverse covariance matrix provides considerable insight for understanding statistical models in the multivariate setting. In particular, when the distribution over variables is assumed to be multivariate normal, the sparsity pattern in the inverse covariance matrix, commonly referred to as the precision matrix, corresponds to the adjacency matrix representation of the Gauss-Markov graph, which encodes conditional independence statements between variables. Minimax results under the spectral norm have previously been established for covariance matrices, both sparse and banded, and for sparse precision matrices. We establish minimax estimation bounds for estimating banded precision matrices under the spectral norm. Our results greatly improve upon the existing bounds; in particular, we find that the minimax rate for estimating banded precision matrices matches that of estimating banded covariance matrices. The key insight in our analysis is that we are able to obtain barely-noisy estimates of k×k subblocks of the precision matrix by inverting slightly wider blocks of the empirical covariance matrix along the diagonal. Our theoretical results are complemented by experiments demonstrating the sharpness of our bounds.
منابع مشابه
Minimax optimal estimation of general bandable covariance matrices
Cai et al. (2010) [4] have studied the minimax optimal estimation of a collection of large bandable covariance matrices whose off-diagonal entries decay to zero at a polynomial rate. They have shown that the minimax optimal procedures are fundamentally different under Frobenius and spectral norms, regardless of the rate of polynomial decay. To gain more insight into this interesting problem, we...
متن کاملEstimating Structured High-Dimensional Covariance and Precision Matrices: Optimal Rates and Adaptive Estimation
This is an expository paper that reviews recent developments on optimal estimation of structured high-dimensional covariance and precision matrices. Minimax rates of convergence for estimating several classes of structured covariance and precision matrices, including bandable, Toeplitz, and sparse covariance matrices as well as sparse precision matrices, are given under the spectral norm loss. ...
متن کاملSURE-tuned tapering estimation of large covariance matrices
Bandable covariance matrices are often used to model the dependence structure of variables that follow a nature order. It has been shown that the tapering covariance estimator attains the optimal minimax rates of convergence for estimating large bandable covariance matrices. The estimation risk critically depends on the choice of the tapering parameter.We develop a Stein’s Unbiased Risk Estimat...
متن کاملRate Optimal Estimation for High Dimensional Spatial Covariance Matrices
Spatial covariance matrix estimation is of great significance in many applications in climatology, econometrics and many other fields with complex data structures involving spatial dependencies. High dimensionality brings new challenges to this problem, and no theoretical optimal estimator has been proved for the spatial high-dimensional covariance matrix. Over the past decade, the method of re...
متن کاملOptimal Estimation and Rank Detection for Sparse Spiked Covariance Matrices.
This paper considers a sparse spiked covariancematrix model in the high-dimensional setting and studies the minimax estimation of the covariance matrix and the principal subspace as well as the minimax rank detection. The optimal rate of convergence for estimating the spiked covariance matrix under the spectral norm is established, which requires significantly different techniques from those fo...
متن کامل